
www.atlas-cybersecurity.com

Netwalker
Fileless Ransomware

June 5th, 2020

The Attack

• Well-known Netwalker ransomware with a twist

• Utilizing ‘reflective dynamic-link library injection,’ this variant of the ransomware is written
in PowerShell and executed directly in memory, without storing the actual ransomware
binary into the disk.

• As a result, this technique is stealthier than regular DLL injection because not only does it
not need the actual DLL file on disk, it also does not need any Windows loader for it to be
injected.

• This eliminates the need for registering the DLL as a loaded module of a process and
allowing evasion from DLL load monitoring tools.

• The Netwalker ransomware is your typical ransomware attack, which includes:

• It encrypts and renames file using six characters as extensions

• it drops ransom notes at various folders in the system and opens one after it has encrypted
the data and documents of its victims

• it terminates processes and services related to backup software and data related
applications in an attempt to maintain persistence and in an effort to prevent the victim
from restoring from backups

Analyzing the PowerShell Script

• The script hides under multiple layers of encryption, obfuscation, and encoding techniques;
in one example, Trend Micro was able to reveal three layers of code

• The top-most layer executes a base64-encoded command

• Decoding this will expose the next layer of code, which is hexadecimal-encoded and XOR-encrypted

• Decoding and decrypting this will then reveal the main script. The file reflectively injects a ransomware DLL into
the memory of the legitimate running process ‘explorer.exe.’ The ransomware is then embedded in the script in
hex format

• The script contains two DLLs, of which one will be utilized depending on the OS architecture of the victim system

• In order to successfully perform reflective injection, it first locates the API addresses of the
functions it needs from kernel32.dll and then uses a series of functions to set up accurate
memory address calculations.

• With all the previous actions taken together, this allows the script to act as the DLL’s
custom loader, thus eliminating the need for a traditional Windows loader

• The script itself can compute and resolve its needed memory address and relations to load
the DLL correctly; it then specifies the process it will inject into

• In a Trend Micro case study, the script injected itself into the Windows Explorer process (explorer.exe)

Prevention and Remediation
• It is becoming increasingly common for threat actors to incorporate Reflective DLL

Injection into their attacks, in an attempt to make their attacks untraceable and
more difficult to investigate

• While ransomware itself poses a formidable threat, fileless attacks increase the threat by
making the malware more effective at evading detection and maintaining persistence

• Some prevention actions available to users and network administrators to combat
the newly emerging fileless threat are:

• Secure PowerShell use by taking advantage of its logging capability to monitor suspicious
behavior

• Use PowerShell commands such as ‘ConstrainedLanguageMode’ to secure systems from
malicious code

• Configure system components and disable unused and outdated ones to block possible
entry points

• And, as always, never download and execute files from unfamiliar sources

